High-Throughput Hardware Architecture for the SWIFFT / SWIFFTX Hash Functions

نویسندگان

  • Tamas Györfi
  • Octavian Cret
  • Guillaume Hanrot
  • Nicolas Brisebarre
چکیده

Introduced in 1996 and greatly developed over the last few years, Lattice-based cryptography offers a whole set of primitives with nice features, including provable security and asymptotic efficiency. Going from “asymptotic” to “real-world” efficiency seems important as the set of available primitives increases in size and functionality. In this present paper, we explore the improvements that can be obtained through the use of an FPGA architecture for implementing an ideal-lattice based cryptographic primitive. We chose to target two of the simplest, yet powerful and useful, lattice-based primitives, namely the SWIFFT and SWIFFTX primitives. Apart from being simple, those are also of central use for future primitives as Lyubashevsky’s lattice-based signatures. We present a high-throughput FPGA architecture for the SWIFFT and SWIFFTX primitives. One of the main features of this implementation is an efficient implementation of a variant of the Fast Fourier Transform of order 64 on Z257. On a Virtex-5 LX110T FPGA, we are able to hash 0.6GB/s, which shows a ca. 16× speedup compared to SIMD implementations of the literature. We feel that this demonstrates the revelance of FPGA as a target architecture for the implementation of ideal-lattice based primitives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpreting Hash Function Security Proofs

We provide a concrete security treatment of several “provably secure” hash functions. Interpreting arguments behind MQ-HASH, FSB, SWIFFTX and VSH we identify similar lines of reasoning. We aim to formulate the main security claims in a language closer to that of attacks. We evaluate designers’ claims of provable security and quantify them more precisely, deriving “second order” bounds on bounds...

متن کامل

An ultra high speed architecture for VLSI implementation of hash functions

Today, security is a topic which attacks the great interest of researchers. Many encryption algorithms have been investigated, and developed in the last years. The research community efforts are also centered to the efficient implementation of them, in both software platforms and hardware devices. This work is related to hash functions FPGA implementation. Two different hash functions are studi...

متن کامل

A novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective

Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...

متن کامل

A novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective

Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...

متن کامل

Architectural design features of a programmable high throughput reconfigurable SHA-2 Processor

The continued growth of both wired and wireless communications has triggered the revolution for the generation of new cryptographic algorithms. Hash functions are common and important cryptographic primitives, which are very critical for data integrity assurance and data origin authentication security services. Many hash algorithms have been investigated and developed in the last years. This wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012